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COLLEGE OF POSTGRADUATE STUDIES

An integro-collocation method for determining initial values for

ordinary differential equations
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Intfroduction

Lanczos' and Ortiz's (1956 and 1969) Tau Method was
originally based on numerical solutions of polynomial
coefficient linear ordinary differential equations under
certain supplementary (inifial or boundary) conditions.
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By using Chebyshev polynomials, Lanczos (1956) introduced the
concept of finite expansions when solving linear differential equations
with polynomial coefficients

ply(]=0 (102

It has been proven that this method can be applied to a variety of
scientific applications due to the fact that it is specially developed for
providing economized representations of a variety of functions that
are usually derivable from linear differential equations with polynomial
coefficients, which are frequently used in scientific computation. It is a
method for solving differenfial equations simply to approximate
special functions of mathematical physics. Besides solving differential
equations numerically, it comes in handy for solving integro-differential
equations, stoke problems, and describing physical space-times in
general. Equations with complex differentials and functional that can
be solved numerically become easier with the help of it. An
approximate solution is obtained by solving exactly an approximate
problem which is the main goal in it.

Instead of fruncating an infinite expansion of power series in an effort
to find an nth order approximate solution of (1.0.2), A modified version
of Lanczos' procedure is searched for an exact polynomial solution,
which is the perturbed equation of (1.0.1) that is modified by adding a
polynomial perturbation term to the right hand side. Power series
solutions can be found with only a finite number of terms other than
zero if the term is chosen in such a way.

Mohammad and M. Mohammad (2022) infroduced the idea of the
Chebyshev Tau method in order to linear Klein Gordon equation with
the use Maple software to digitally solve the problem.
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Introduction to tau’s integrated formula

It was often an integrated approach that led to an improvements in
the accuracy of the Tau approximant y(x) goften from a differential
form. As a result of this variant, the differential equation is intfegrated
through an order of time as many times as its order, resulting in a
higher order perturbed differential equation.

The Method and Derivation

Suppose we have a linear differential system of m-th order;

/ i m

Ly =R My +R 0y () +P 00y (0 +.4P Wy (=100 (21D

where a<x<b

T =]

r
. arky O =t k=1()m (2.12)

Ly (x rk) =
r

Let f j j mj g (x) dx denoftes the indefinite integration m
times applied to the function g (x) and

1=l ] f (219
The integrated form of (2.1.1) is written as

=0 ) dct () (2.14)
Where Cm(x) denotes an arbitrary polynomial of degree (m - 1)

arising from the constants of the integration. The Tau approximant
yn(x) thus satisfies the perturbed problem:;

=TT E) s ey (0 + H g (0 (215)
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where
m+s+1
Hmin®= 2 rmes-aTa-mer+1(9 (2.1.6)
r=0
The Tau method often gives a more accurate approximation due to
the higher order perturbation term. To combine this variant of the Tau

method with collocation, we collocate (2.1.5) — (2.1.6) at the equally
spaced points.

(b-a)k
A — - k=10)n+2, ¥ x € |a, b] (217)

This leads to a system of (n + 2) algebraic equations for uniquely
determining the (n + 1) coefficients of

n
yn(x) = Z ar Xr = y(x)
r=0

(2.1.8)

and the Tau (r) parameter.

This is the exact solution of a perturbed equation by adding a
polynomial perturbation term to the right hand side of (2.1.1). The

polynomial y (X) satisfies the differential system
n

Ly (x)= g Py P0=fM+H ( (2.19)
n r _ 0 r n n
m-1
Ly =Y a 0y ™ (x J=a, k=10)m (2.1.10)
n r :0 r n r

where the perturbation term is constructed in such a way that (2.1.9)
and (2.1.10) has a polynomial solution of degree n. Oyedotun, et. al.
(2021) intfroduced error analysis of the Tau method in order to a class
of third order initial value problem.

Lanczos (1956) took H n(X) to be a linear combination of powers of x

multiplied by the Chebyshev polynomials. The choice of the
Chebyshev polynomials stems from the desire to distribute the errors
defined by;
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maXq < < o YX) = ¥, (9]

CHEBYSHEV POLYNOMIAL

The Chebyshev polynomial, T(X). of degree n over the interval [-1,
1] is defined by

-1
T,(x)=cos(ncos x). n=012 .. (3.0.0)
This
expression can also be written as

Tn (x) = cosn@, where x =cos@ (3.0.2)

From equation (3.1), it is easy to observe that

Tn(x) :T_n(x)' Also, Ton (X) :TZn(_X) and
Ton+1(X) =-T2n41(%).

i.e

Tn(x) (303

is even or odd function according as n is even or odd. Now, from the
frigonometric formula;

cos(rn— 1)@ + cos(n + 1)@ = 2cosnbeosd (3.04)

The recurrence relation for Chebyshev polynomial is obtained as
Tno1() + Tpe1(x) = 2xT (%)
which can be written as

Tn+1(x):2XTn(X)‘Tn—1(X)' n=123,.. (3.05)

From (3.0.2), it is obvious that |Tn(X)| <1 for-1<x<1. We can
generate the Chebyshev polynomial from (3.0.2) and (3.0.4);
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To(x) =1
T1(x) = x
To(x) = 2x2 -1

T3(x) = 4x3 - 3x
T400 =8x* —8x% +1

T5(X) =16x° — 20x° + 5x

6 _ yard 4 1ax2 1

Te(X) =32x° — 48x™ +18x“ -

T7(%) = 6ax" — 112x° + 56x° — 7x

Shifted Chebyshev Polynomials

The interval of the Chebyshev polynomial -1<x<1 wil be
converted to the interval 0 < x <1 because of its usefulness in the

methodology. This conversion of the interval of Chebyshev polynomial
to another is what we call the “Shifted Chebyshev Polynomial”.

If Xe[-1,1]>U €[0,1] and let U =ax+ f,wherea and
S are some parameters. Therefore,
—a+ =0 and a + =1, solving the equations simultaneously we

1
have that a = f = PE Substitute back the values of a and f to have

X =2U —1.Thus, we have the shiffed Chebyshev polynomial

TrT (x) = T: (2x = 1), (since Uis a dummy variable)
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Hence;
Ty()=1 = I, (x)=1
T (x)=x = Tl*(m) =2xr-1
2 * 2
L@=2 -1 2 L)=8 -8x+1
2
I (x)= 41‘3 -ir = T;(r) = 32.\'3 - 48x7 +18x -1

2 2
T (x)= 81‘4 -8" 41 = T: (x)=128 1‘4 —256.1'3 < 160x" -32x+1

3 4 3

g g 2
I (x)= 165 - 207" +5x = T;(r)=512 r 1805 £ 1207 - 400x” £ S0x -1

2 5 2
T(x) = 22 Sowt it o Iﬁ*(r)= P R A VTR R VRS ¥ P P
The collocation method

A collocation method is a method which involves finding an
approximation solution to an equation based on a set of functions,
sometimes referred to as the frial function or basis function, where the
approximate solution has to satisfy certain conditions at certain points
of the domain of definition, called the Collocation points.

The method was first proposed by Kantorovich and Akilov (2009). Their
method was a procedure for collocating lines in two variables for the
solution of partial differential equations, in which the collocation was
applied to one variable for every fixed value in the second variable.
Within the specified range of the problem, standard collocation
requires equal spacing between collocation points, i.e.

b-a

xke[a,b], Xy =kh, kzl(l)(k+l), where h =
n+1

DESCRIPTION OF THE METHOD

In the description of the method, we shall consider the first and
second order differential equations

Numerical Example on First Order Differential Equation

Let us consider this;

2(1+ x)?+y:0, at y(0)=1
X

Whose theoretical solution is
1

yz./1+x
7
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To apply the technique, we will integrate once since it is of first order
differential equation

dy

d—+y=0 = 2y/(x)+2xy/(x)+y(x)=0
X

2(1+ x)

X X X
IL(y(x))zz(j)y (s)ds+2(j)sy (s)ds+éy(s)ds=rlTn+l(x)

2[y() - y(©1+2[xy(x) - [ y(s)dsl+ [ y(s)ds=17,T ., (X)
0 0
2[y(x) —y(©@)]+2xy(x) - 2({ y(s)ds +(f) y(s)ds=1,T,,,(X)
2[y(x) =1] + 2xy(x) —} y(s)ds=17,T, .,(X) since y(0)=1
0

2y(x) =2+ 2xy(x) - [ y(s)ds=7,T,,,(X)
0

n
But y (x)= 2 arxr,‘rhenwehove
" r=0
r+1
n . n . nooax
2 Y a_x -2+2x a X' - X ———=1T,,(X
r=0 r=0 r=0 "+l
n n nooa x'tl
23 ax'v2 % a3 o oinT ()
r=0 r=0 r=o0 "+l

Now, we take the degree of Y -approximant at N = 3
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3 r 3 r+l 3 arx
2 Y ax +2 Y ax - > =2+7,T,(X)
r=0 r=0 r=o Il
r+l
3 3 3 ax 4
2 > arxr+2 > arxr+1— > r =2+7 ) C;]Jrlxr
r=0 r=0 r=o Il r=0
3 o3 P ﬂx”l TR
2 Y ax +2 Y ax - =2+7 X Crx
r=0 r=0 r=g I+l r=0
9 2 349 2 3 4)_ E 2 } 3 E 41 _
agtagXTagx” Tagx™ |t elagktagx™+ax™ +agx a0X+2a1x +3a2x +4a3x
2+-q(ﬂsx4-2%X3+1mxz-32x+ﬁ
1
We collocate at xk=kh,where h = = h == Therefore,
n+2 5

k
X =y k=105

1
Which implies that X1 = E
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At x:l,
5

IS SO U DY I SN ST S SO T I SN ST SUNE S
AT gAT 958 T s 5307 58T 1p 2T s || 50T 5y 582 T oggg 83 )T
28 %6 160
247 —-—+—-—+1
65 15 25 5
= 16300 2+ M50, +700a, + Wlay + 6324 7, = 15000 0

2
At x=-,
5

IR N R T I TR N N I IR
Q07 5AT 9582 T s |7 AT g8 T 2T o83 |7 50T AT T nds |

2+ ‘[1(128(16j - 256 (8) +160 (4j -3 [2) + 1)
625 125 2 5

= 45005, + 1950, +80a, + 2 a, - 1209 7, = 3750 (2

3
At x=-,

w O

2+—+3+2—7 +2§+ﬂ+2i+ﬂ §+g+2—7+ﬂ—
W7 g T s T s |7 50T T p 8T r®s 7| 50T g T g T gy |

20| 1 || 2| i) |- 2|41
5) ) (%) T\
= 19500 3, + 13050 g, + 8100, + 49414, - 5196 7, = 15000 3

At x:i,
5

2 +7+§ +ﬂ +2£+§+ﬁ +@ ﬂ+E+ﬂ+ﬁ =
Q07 5T 58 T p® |70 50T T r 82T g3 7| 50T 5T gp® T g

5
2471, 128@ - 256 hal +160 1 —32i +1
625 125 25 5

= 550a, + 48005, +4000a, + 4 a, + 1817, = 3750 (4

10
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At x=1
1 1 1
2(a0+a1+a2 +a3)+2(a0+a1+ az+a3)- toat ity =2+1,(128 - 256 + 160 - 32 + 1)
> 3ayt+42a) +May + Hag-127 =2 (5)
Solving (1), (2). (3). (4) and (5) simultaneously, we have;

50 = 0999437880434, 4, = - 0.481731114121,'02 = 0.271359205109, 45 = — 0.0822300621
1= — 0.001124239131
For the Y —approximant at n = 3;

n r
y = X ax
n r

r=0

substitute  the

=Y, (X) =ag+ a;X + a,x2 + agx’

Now, values of aO,al,aZ,aSTo have the

Y — approximant

_1'3 (x) = 0.9994378804 34 - 04817311141 21 x + 0.2713592051 09 _\-] - (.0822300621 4 1-3

The table 1 shows the exact error evaluated at some equidistance
points.

X Y — Approximant Analytical solution Exact Error

01| 0053896131011 | 0.953462589246 | 433541765 x10 2
02| 0.913863795752 | 0.912870929175 0.928666 x 10
03| 0877120662979 | 877058019307 6.26436 x 10 >
04| 0844900183625 | 0.845154254729 | 2.540711x10
05| 0.816133366882 | 0.816496580928 | 3.632141x10
06| 0790326832375 | 0790569415042 | 2425827 x10
07| 0766987199734 | 0.766964988847 | 2.22109 x 10 °
0.8 | 0745621088584 | - )cacoogon 265096 x 10
09| 0725735118553 | o -ocsososnry| 2.588684 x10 7

11
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—4

Numerical Example on Second Order Differential Equation

Let us consider this;

2
u+2ﬂ+y:x, at x=0,y=0,—=-1
d x2 dx dx

Whose theoretical solution is

y=2¢ " 4+x-2
To apply the technique, we will integrate twice since it is of second
order differential equation

dy y
d x2 dX

XV
L )= ] {y (W + 2y () + y() [du [
00

o)puer
Afreerone

by=x =y M+2y 0+ y =

udu dv}+ 7, T (X)

o — X
o —<

o —
—
<
—
=
+
o
<
/-\\
=
D_

o
[
o
<

|

X 2

[y/(u)+2y(u)]\6+£y(u)du]dv:J UT dv+7,T,,,(X)

0 0

Ot— <

r+l
X n av

J (y’(v)+2y(v)—y’(O)—zy(O))+ D
0 r=0

Substituting the value of the conditions given, we have

1 n+l

X
dv=1jv2dv+rT (x)
r+1 20

12
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X n oav't X
/ r 1 2
) (y (v)+2y(v)+1)+ ¥ dv==[vidv+zT (X
. (Zo T+l 24 1 n+1
X X o g y'l 1 X
[y(v)+v]§+2j y(v)dv+J. I— dv:—[vg} +7, 1,5 (X)
0 o =0 r+1 6 0
n a Xr+1 n a Xr+2 1
y) +x-y@+2y —+ ¥ ——=x+7,T,,(X)
r=0 r+1 r=0 X+2 6
n a Xr+1 a Xr+2 1
y+2Y ——+ Y ==X —x+ 7T, (%)
r=0 r+1 r=0 X+2 6

Now, we take the degree of approximation at N = 3,

3 3 a Xr+1 a Xr+2 1 4
Yax'+2y +y ==x-x+7, ¥ cHx'
r=o r=0 Xx+1 =0 r+2 6 r=0 '
1 1 1 1 1 1 1
(a0+a1><+a2x2+a3x3)+2(a0X+2a1x2+3a2x3+4a3x4j+(2aoxz +§a1x3+1a2x4+ga3x5 =

!
fXS—X+r1(128x4 —256X3+160X2—32x+1)
6

1
We collocate at x, =kh,where h= = h =E' Therefore,

n+2

k
X =g k=105

.. . 1 2 3 4
This implies that X = —, — — —
1 5 2 5 3 5 4 5 5

13
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[111\[1111\[1111\

PR I | e — |-
D757 95T T 5B )T 507 50 3752 25008 ) 50® T 375 2500 156255 )

11 [_8_6 160 %2
750 5 65 125 25 5 )

2 ?30[]51 4%3?35,—83 [};3—?9[}3[}[}- =-186250 1)
Atx:z,

5

L o4 08 ) 2 4 8 16 (4 8 16 B
BT gl T o T ppds 520 50 T 782 5583 | T 500 T g g0 22 g5 23 )

8 2
— -+ 128 — 16 256i+1601—323+1
%0 5 625 125 25 5

= 1762500 gg + 545000 51 +196000 77 + 73920 53 — 649500 1y =—360000 (2

’ 3
At x=—,
5

B L A I AL N D (VAL ADR.  EOEo. S
a0 T5a1 7 5502 T 53 570750 T 3752 T 2500%% ) T 5070 T 375 M T 250072 T 15625 M )
7

3 . - .
- 128 — il —256—7+1602—32£+1
750 5 625 125 25 5

2231250 g + 9675004 + 502875 g + 27783043 — 6495007y = 528750 (3

[t

=

Ar x=

U||4*

IETRCI NERR N 16 +64 6 1o
B 70T 357 T s )T A 3N T 50N T 375% T 2500M ) T 50 T 375N T 2500™2 T 15625

64 4 256 64 16 4
— ——+ 1| 128 |- 256 — |+ 160| — |- 32|~ |+1
750 5 625 125 25 5
= 2737500 g + 1510000 4 +1016000 g5 + 733440 45 + 79050071 = —670000 (4)

=1 " '

i v I 1 1 ) {1 1 1 1)1 ‘ :
J.a,:,+al+aj+a3l+2:l.a,:,+3a1+3 +4aJ:+: 1a:,+3al+._—1<;.J+§a3:‘:=g—l—rl|\118—23t’>+1t’>[>—32+1.

L > Wy + Mgy +57 3y + 31y - Npg = -2 )

Having solved (1), (2), (3). (4) and (5) simultaneously, we have;

14
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Iao = 0.001793702910, g, = — 1.015646447'., a, = 1.052558639, g5 = — 0.2868133318
7, = — 0.0004090234788

For the Y —approximant at n = 3;

n r
y ()= 2 ax
n r

r=0

substitute  the

=Y, (X) =ag+ a;X + a,x2 + agx’

Now, values of aO,al,aZ,aSTo have the

Y — approximant

y3 (x) = 0.0017937029 10 — 1.015646447 x + 1.052558639 x> — 0.2868133318 x°

The table 2 shows the exact error evaluated at some equidistance
points.

X Y — Approximant Analytical solution Exact Error

0.1 —0.0895321687 32 —0.0090325163 804 | 7.9299507 x 10
02 | -0.162538493629 | —0.162538493629 | 1 y107ast 103
0.3 —0.2159139136 39 —0.2183635591 02 | 4496455 x 10 °
04 —0.2544115468 85 0.259350908251  |4.9483614 x 10 °

05 | _0.2787415273 15 —0.2869386807 95 | g 1971534 x 10 3
06 | _0.2906247349 19 0302376727577 | 11751992 x 10 2
0.7 | _0.2917820496 87 —0.3068293921 85 |1.5047342 x 10 2
08 | _ 2839343516 12 0301342071567 |1.7407719 x 10 2
0.9 | _0.2688025206 82 —0.2868606804 67 |1 8058159 x 10 2
1.0 — 0.2481074368 9 0264241117533 | 1.613368 x 10 2

CONCLUSION

A numerical method which combines the idea of the integrated
formulation of the Tau method with collocation techniques has been
presented. The integration of the differential equation ensures that the
corresponding Tau formulation involves a perturbation term of higher

15
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order to guarantee an improved accuracy. The collocation also
allows for the choice of sufficient number of points at which the
resulting infegrated equation is evaluated to guarantee a consistent
linear system of algebraic equations to make for solvability. First and
second order differential equations have been considered for the
illustration of the scheme developed and the numerical evidences
confirmed that the technique is accurate and effective.

Also, it could be observed that the higher the order of the differential
equation, the less the accuracy of the tfechnique. This was confirmed
from the tables that the higher the order of the degree the less the
accuracy the method could give.
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